Copyright (c) 消費者金融一覧 Creative.ltd, All Rights Reserved.

オンラインゲーム

オンラインゲームページ

用語

関数解析学

(かんすうかいせきがく、英: functional analysis)は数学(特に解析学)の一分野で、フーリエ変換や微分方程式、積分方程式などの研究に端を発している。特定のクラスの関数からなるベクトル空間にある種の位相構造を定めた関数空間や、その公理化によって得られる線形位相空間の構造が研究される。主な興味の対象は、様々な関数空間上で積分や微分によって定義される線型作用素の振る舞いを通じた積分方程式や微分方程式の線型代数学的取り扱いであり、無限次元ベクトル空間上の線型代数学と捉えられることも多い。


解析学

かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である。代数学、幾何学と合わせ数学の三大分野をなす。数学用語としての解析学は要素還元主義とは異なっており、初等的には微積分や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い。これは解析学がもともとテイラー級数やフーリエ級数などを用いて関数の性質を研究していたことに由来する。例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる。解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学や工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。

消費者金融一覧その他



次へ次へ